An Intelligent Credit Forecasting System Using Supervised Nonlinear Dimensionality Reductions
نویسندگان
چکیده
Kernel classifiers (such as support vector machines) have been successfully applied in numerous areas, and have demonstrated excellent performance. However, due to the high dimensionality and nonlinear distribution of financial input data in credit rating forecasting, finding a suitable low dimensional subspace by nonlinear dimensionality reductions is a key step to improve classifier performance. By integrating supervised kernel locality preserving projections (SKLPP) with kernel classifiers, this study develops a novel forecasting system for credit ratings. SKLPP is employed to gain a perfect approximation of data manifold and simultaneously preserve local within-class geometric structures according to prior class-label information. Empirical results indicate that, compared with other dimensionality reduction methods, the performance improvement owing to SKLPP is significant. Moreover, the proposed hybrid classifier outperforms other conventional classifiers. Keywords—Kernel Locality Preserving Projections, Subspace Analysis, Dimensionality Reduction, Credit Rating
منابع مشابه
Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملLinear versus nonlinear dimensionality reduction for banks' credit rating prediction
Dimensionality reduction methods have shown their usefulness for both supervised and unsupervised tasks in a wide range of application domains. Several linear and nonlinear approaches have been proposed in order to derive meaningful low-dimensional representations of high-dimensional data. Among nonlinear algorithms manifold learning methods, such as isometric feature mapping (Isomap), have rec...
متن کاملAn Intelligent Credit Assessment System by Kernel Locality Preserving Projections and Manifold - Regularized SVM Models
Support vector machines (SVM) have been successfully applied in numerous areas of pattern recognitions, and have demonstrated excellent performance. However, traditional SVM does not make efficient use of both labeled training data and unlabeled testing data. Moreover, one usually encounters high dimensional and nonlinear distributed data in classification problems, especially in financial cred...
متن کاملAn Intelligent and Dynamic Decision Support System for Nonlinear Environments
Nonlinear time series systems are high dimensional and chaotic in nature. Since, the design of a dynamic and efficient decision making system is a challenging task, a Support Vector Machine (SVM) based model is proposed to predict the future event of a nonlinear time series environment. This model is a non-parametric model that uses the inherent structure of the data for forecasting. The Hybrid...
متن کاملمدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره
In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...
متن کامل